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Individual Differences in Marketing Placebo Effects: Evidence from Brain Imaging and 

Behavioral Experiments  

 

Much recent research has studied whether marketing-based expectancies such as price and 

brand quality beliefs influence the consumption experience and subsequent behavior, but almost no 

research has examined individual differences in “marketing placebo effects” (MPE). In this paper, we 

suggest three moderators of the effect marketing-based expectancies have on the behavioral and 

neural measures of the consumption experience based on previous findings from the neuroscientific 

literature investigating traditional clinical pain placebo effects. We used a novel automated structural 

brain imaging approach to determine individual differences and combined this approach with 

traditional behavioral experiments. We found that consumers high in reward-seeking, high in need 

for cognition, and low in somatosensory awareness are more responsive to MPE.  
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Individual Differences in Marketing Placebo Effects: Evidence from Brain Imaging and 

Behavioral Experiments 

 

Multidisciplinary evidence suggests that important factors that have an impact on the value or 

enjoyment derived from consumption are influenced by psychological associations and cognitive 

concepts. Effects of brand images, quality or efficacy beliefs about products and treatments, expertise 

of artists, and nutritional information on food packaging, for example, can occur independent of—

and in extreme cases even override—the mere physical sensory consumption experience (Ariely and 

Norton 2009; Plassmann and Wager 2013). These cognitive concepts are learned by consumers over 

time and are shaped by everyday experiences with products, services, and social influences.  

One important driver of how such cognitive concepts influence consumption is expectancies: 

beliefs and predictions about future feelings, events, or outcomes. For example, one such belief is 

that lower-priced goods are of lower quality (Gerstner 1985; Huber and McCann 1982; Rao and 

Monroe 1988). Hence, prices can serve as an external cue that signals quality and thus generates an 

expectation about how good the product is. For example, several studies have shown that people 

enjoy consuming identical products (such as wines or chocolates) more when they have a higher 

price tag (Goldstein et al. 2008; Plassmann et al. 2008; Wilcox, Roggeveen, and Grewal 2011). The 

price tag of a painkiller even changes consumers’ pain perceptions (Geuter et al. 2013; Waber et al. 

2008). Interestingly, these price-based expectancies do not change only reported measures of the 

consumption experience; they also change neural measures of consumption enjoyment such as 

activity in the ventromedial part of the prefrontal cortex (vmPFC) for the case of experienced flavor 

pleasantness (Plassmann et al. 2008) or the anterior part of the insula for the experienced displeasure 

of feeling pain (Geuter et al. 2013). That is why such marketing-based expectancy effects have also 

been referred to as “marketing placebo effects” (MPE) (Shiv, Carmon, and Ariely 2005a, 2005b).  
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In fact, MPE go way beyond expectancies based on price and quality; a large body of 

literature in consumer psychology has studied how people’s expectancies shape consumption 

experiences. One of the first papers on this topic showed that brand label information can alter how 

much people enjoy consuming different beers (Allison and Uhl 1964). Converging evidence for 

marketing-based expectancy effects has been shown in various follow-up studies for both products 

and services across a variety of domains (Boulding et al. 1993; Kopalle and Lehmann 2001; Lee, 

Frederick, and Ariely 2006; Raghunathan, Walker Naylor, and Hoyer 2006; Steenhuis et al. 2010; 

Wansink and Chandon 2006; Wilcox, Roggeveen, and Grewal 2011; S. A. Wright et al. 2013).  

Understanding the brain processes underlying expectancy and valuation during consumption 

is critical to understanding why expectations have such a powerful influence on consumption. Are 

these effects mere reporting biases based on post-consumption rationalization and cognitive 

dissonance, or do expectancies change how the consumption experience is actually encoded in the 

brain? Complementing the neuroscientific research on price placebo effects mentioned above, a few 

studies have investigated whether other marketing-based expectancies alter other positive, affective 

experiences such as taste, flavor, and aesthetic pleasantness in the brain (for a review, see Plassmann 

and Wager 2013).  

For example, de Araujo and colleagues investigated the influence of verbal labels of smells 

(cheese vs. body odor) on neural signatures of olfactory processing (de Araujo et al. 2005). They 

found that indeed when subjects smelled identical odors, a positive or negative description altered 

neural activity in the ventromedial prefrontal cortex (vmPFC) and also in the bilateral amygdala, all 

linked to olfactory processing. A study by Nitschke and colleagues found that expecting an aversive 

taste to be less aversive did decrease neural activity in the primary taste cortex, involving taste 

intensity encoding, although the intensity of the negative taste was kept constant (Nitschke et al. 

2006). Finally, Kirk and colleagues (2009) found that the pleasure participants derived from viewing 
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art pieces, and the accompanying engagement of the vmPFC, was higher when the subjects believed 

they were created by an expert (i.e., an artist) rather than by a non-expert (i.e., the experimenter).  

Together, these findings suggest that across domains and marketing actions, expectancy 

manipulations are associated with changes in neural activity linked to consumption-related 

processing in the brain, ruling out the hypothesis that expectancy effects simply reflect demand 

characteristics or report biases. Expectations truly influence neurobiological responses to the 

experience of different stimuli showcasing the relevance of expectancy effects for consumer behavior 

and marketing management. However, almost no research has examined the neural and 

psychological processes required for such MPE to occur.  

Against this background, the goal of this paper is to shed light on individual differences in 

MPE. To reach this goal, we first draw on neuroscientific evidence about the underlying mechanisms 

of pain placebo effects to extend Shiv, Carmon, and Ariely’s model of MPE and suggest a 

multidisciplinary model of how marketing-based expectancies alter subjective consumption 

experiences. We then test the novel aspects of this model with a variety of different MPEs (price, 

brand labels, claims) and sensory experiences (food and aesthetic consumption) following a two-step 

procedure: In the first step, we test the neural predictions of our model using a structural imaging 

approach from neuroscience to study individual trait-related differences (study 1). We find that the 

volume of gray matter in the striatum, the posterior insula, and the dorsal medial prefrontal cortex 

moderates the expectancy effects of price and health claims on the experienced taste pleasantness for 

wine and milkshakes. 

In a second step, we rely on existing evidence linking each of these brain areas with 

personality traits (i.e., the striatum with reward-seeking, the posterior insula with somatosensory 

awareness, and the dorsal medial prefrontal cortex with need for cognition) to further test the 

implications of our model for how personality traits moderate the placebo effects of price in 

behavioral experiments of wine tasting (studies 2a, 2b, and 2c). In the last study, we test the 
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robustness and generalizability of our effects by studying whether reward responsiveness, 

somatosensory awareness, and need for cognition also jointly moderate the effects of the perceived 

expertise of artists on subjective aesthetic experiences (study 3). 

We conclude the paper by discussing the implications of our findings for marketing and 

consumer neuroscience and by highlighting the limitations of our work and calling for future 

research. 

THEORETICAL AND METHODOLOGICAL BACKGROUND 

Drawing on existing theories in cognitive neuroscience about pain placebo effects, we first 

suggest an extended model of processes underlying marketing action–based expectancy effects. We 

then provide further methodological details about the novel structural brain imaging approach we are 

applying in this paper. 

Behavioral and Brain Mediators of Placebo Effects  

A first model of MPE and how they work was suggested by Shiv, Carmon, and Ariely 

(2005b). In their model they first suggested and then showed empirical evidence for the following 

effects: External cues such as the price of an energy drink do generate response expectancies about 

the benefits of the product that in turn change behavioral outcomes such as the number of puzzles 

solved in a mental-effort task. We have incorporated their findings in the early and later stages of our 

model, shown in the white boxes in Figure 1. As a process variable, Shiv, Carmon, and Ariely found 

evidence that the salience of product-specific beliefs mediates the existence of MPE. 

Figure 1 about here 

Shiv, Carmon, and Ariely’s model has been extended by recent research in cognitive 

neuroscience that sheds light on the underlying neural signatures of MPE. The experiments reviewed 

above provide evidence that expectancies not only alter reported measures of pleasure or displeasure 

of consumption but also affect responses in consumption-related brain systems, shown in the light 
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gray box in Figure 1. Another crucial question, however, is how expectancies actually shape 

consumption. To shed light on the underlying neural and psychological processes of MPE, we 

reviewed studies that have examined brain mediators and moderators of expectancy effects and 

individual differences in such effects. Three important processes emerged from this review to predict 

anticipatory processes of expectancy effects: (1) dopaminergic functioning related to reward-seeking 

(i.e., motivation) and learning, (2) processing in the posterior insula cortex and somatosensory 

cortices that has been linked to sensory processing of bodily states and experiences, and (3) 

prefrontal processing thought to be involved in cognitive processing, specifically cognitive regulation 

and appraisal of emotional states. 

Dopaminergic functioning related to reward-seeking and learning. Several studies suggest a 

link between expectancy effects and dopaminergic functioning. A study by Atlas and colleagues 

(2010) was the first to use formal multilevel mediation analysis to identify the brain regions that link 

placebo-like expectancy effects on pain-related responses with expectancy effects on subjective pain 

reports. In their study, cue-based expectations (i.e., an auditory cue thought to predict intensity of 

pain) and pain reports varied in every trial, and the authors tested whether responses in the brain in a 

given trial contributed to the link between cue-based expectation of high vs. low pain and changes in 

the pain experience. After an initial learning phase, the actual level of pain intensity was kept 

constant. They found that a subset of pain-responsive regions formally mediated trial-by-trial 

expectancy effects on pain and that expectancy effects on these regions were in turn mediated by 

expectancy-induced anticipatory responses mostly in the ventral striatum, a region with a relatively 

high density of dopaminergic neurons linked to reward-seeking and learning behavior.  

To complement these findings, several other studies investigated the role of reward 

responsiveness for pain placebo effects. They found that participants who showed stronger neural 

markers of reward responsiveness, lower levels of dopamine and opioid binding during pain 

stimulation (Scott et al. 2007; Wager, Scott, and Zubieta 2007; Zubieta 2005), and larger gray matter 
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volume in mesolimbic brain regions (e.g., the ventral striatum; Schweinhardt et al. 2009) also 

showed stronger pain placebo effects. Indeed, while most of the previous studies reviewed in the 

introduction revealed that expectations alter consumption-related behavioral responses and responses 

in consumption-related brain regions, some studies on pain placebos found expectancy effects in the 

striatum, among other regions, to predict expectancy-enhanced placebo analgesia (e.g., Kong et al. 

2006). 

Also, patient populations that exhibit disorders related to abnormal dopaminergic functioning, 

such as depression (Kirsch et al. 2008; Rutherford et al. 2010; Sneed et al. 2008) and Parkinson’s 

disease (Benedetti et al. 2004; Lidstone et al. 2010), show relatively high pain placebo response rates. 

Interestingly, in a study by de la Fuente-Fernández and colleagues, the authors could even show the 

power of placebo effects by providing in vivo evidence for substantial release of endogenous 

dopamine in the striatum of Parkinson’s disease patients (i.e., a population with a damaged 

nigrostriatal dopamine system) in response to placebos (de la Fuente-Fernández et al. 2001).  

Finally, behavioral studies have revealed correlations between increased pain placebo 

responsiveness and personality traits linked to increased dopaminergic functioning, such as 

behavioral activation and optimism (Geers et al. 2005; Morton et al. 2010; Schweinhardt et al. 2009). 

All of these studies suggest a link between expectancies and dopaminergic processing linked to 

reward responsiveness. In other words, this part of our MPE model suggests that an external cue such 

as the price of wine leads to expectations of how good the wine tastes that are linked to a 

motivational signal of reward-seeking and that people who are more responsive to rewards should 

exhibit higher MPE.  

Processing in the posterior insula cortex and somatosensory cortices that has been linked to 

awareness of sensory processing and bodily states. Another mechanism can be suggested based on 

our literature review of pain placebo effects in cognitive neuroscience. In Wager et al.’s pattern 

classification analysis of individual difference predictors of pain placebo effects, activity in the 
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somatosensory system (i.e., somatosensory cortices, posterior insula) showed a negative correlation 

with pain placebo effects (Wager et al. 2011). These areas were also found to formally mediate pain 

placebo effects in Atlas et al.’s study (2010). From a conceptual standpoint, it makes sense that pain 

placebo effects should also be altered by brain regions encoding somatosensory or physical aspects 

of pain processing, because somatosensory pain processing precedes higher-order pain processing to 

determine the liking/disliking of the pain experience—that is, experienced (dis-) utility. 

However, studies investigating expectancy effects on flavor processing have also found that 

brain activity in somatosensory areas is dampened by expectancy effects (Atlas et al. 2014; Nitschke 

et al. 2006). On this basis, we suggest a more general role for somatosensory processing to underlie 

MPE. Somatosensory processing precedes experienced utility processing and is involved in bottom-

up processing of expectancy effects. Thus, we suggest that somatosensory processing is another 

intervening variable in our model of how MPE work and that people who are more aware of their 

somatosensory states should be less responsive to MPE. 

Prefrontal processing thought to be involved in cognitive regulation and appraisal of 

emotional states. Other potential mechanisms underlying MPE that can be derived from the existing 

findings about pain placebo effects are linked to cognitive processes involved in emotion regulation 

and appraisal. For example, Wager et al. found correlations between the magnitude of pain placebo 

effects on reported pain and the magnitude of heat-evoked responses in pain-processing brain regions 

(Wager, Scott, and Zubieta 2007). Interestingly, however, pain-processing regions were not the only 

regions that correlated with pain placebo effects. During pain anticipation, prefrontal brain regions 

involved in emotional control and emotional appraisal, working memory, and predicted value 

encoding showed significant positive correlations with pain placebo effects. In fact, a new analysis of 

Wager and colleagues’ data using machine learning and pattern classification techniques to 

investigate individual differences in pain placebo effects showed that increased anticipatory 

responses in a frontal (i.e., lateral orbitofrontal, lateral and medial dorsal prefrontal cortex) and 



	

	

10

parietal brain system involved in emotion regulation and emotional appraisal had a higher predictive 

accuracy for placebo effects to occur than activity in the brain’s pain-processing regions (Wager et al. 

2011).  

Similar findings were shown by Atlas et al.’s formal mediation analysis of pain expectancy 

effects and health label expectancy effects (Atlas et al. 2010; Atlas et al. 2013). Besides pain- and 

taste-processing regions, Atlas et al. also found the lateral and medial part of the dorsal prefrontal 

cortex to mediate expectancy effects on pain and taste perception. We suggest in our model that 

higher-order, top-down cognitive processes of regulating emotional states and emotion generation 

play a role as an intervening variable for MPE to occur. In turn, people who rely more on such 

cognitive systems during decision making should be more responsive to MPE. 

Taken together, expectancies might affect consumption-related circuitry not only because 

they simulate the consumption experience and experienced utility prior to consumption, but also 

because expectancies influence intervening processes such as dopaminergic processing linked to 

reward-seeking, prefrontal activity linked to cognitive regulation and appraisal of emotional states 

and experiences (i.e., a top-down cognitive processing), and attention to or away from somatosensory 

experiences encoded in somatosensory brain areas (i.e., a bottom-up somatosensory processing 

linked to processing in the posterior insula and somatosensory cortices). These novel process 

variables of our model are shown in the dark gray boxes in Figure 1 and are the individual 

differences we are investigating in this paper. 

Using Structural Brain Imaging Data to Investigate Brain Moderators Underlying Consumer 

Behavior  

Over the past decade, an increasing number of papers investigating questions related to 

consumer behavior and marketing have integrated theoretical and methodological approaches from 

neuroscience (for recent reviews, see Plassmann, Ramsøy, and Milosavljevic 2012; Yoon et al. 2012). 

The vast majority of studies to date have used functional magnetic resonance imaging (fMRI) to 
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establish associations between brain processes and consumer behavior (Kable 2011). While fMRI has 

several important strengths that justify its widespread use, consumer neuroscience research programs 

would be strengthened by greater inclusion of other neuroscientific techniques that can complement 

fMRI.  

In this paper, we follow this idea and use an approach novel to consumer neuroscience that is 

more suitable than fMRI to investigate individual differences on a trait level, which is the goal of this 

paper: automated structural MRI analysis. Differences in brain structures such as gray matter volume 

can be linked to individual differences in brain function, personality, and behavior. All of these 

constructs are of crucial importance to understanding the underlying processes of marketing-relevant 

behavior, and thus we believe that automated structural MRI analysis will be an important new 

method in the toolkit of consumer neuroscience.  

MRI-based measures of gray matter have been shown to be related to brain function, in both 

health and disease (e.g., Newman et al. 2007; Peinemann et al. 2005; Schweinhardt et al. 2009; 

Tabibnia et al. 2011), possibly because they partly reflect the number and size of neurons and the 

complexity of their synaptic connections. Likewise, individual anatomical differences—for example, 

within reward-related dopaminergic pathways—have been linked to significant differences in 

behavioral effects, including variation of personality traits (Depue and Collins 1999).  

Following this idea, in recent years a large amount of literature has emerged showing that 

individual differences in behavior and personality can be at least partly explained by differences in 

brain structure (Banissy et al. 2012; M. X. Cohen et al. 2008; DeYoung et al. 2010). The basic 

assumption underlying such approaches is that regional gray matter volume, as measured by MRI, 

corresponds to the regional volume and wiring of nerve cell layers in the brain. The most widely used 

method to investigate large groups of subjects is voxel-based morphometry (VBM). Since its first 

description (Ashburner and Friston 2000; Wright et al. 1995), VBM has been widely applied to 

investigate brain structural foundations of pathological processes as well psychological variables and 
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individual differences in behavior or personality (DeYoung et al. 2010; Schweinhardt et al. 2009; 

Tabibnia et al. 2011; Yokum, Ng, and Stice 2011). 

In essence, VBM is an automated technique that allows the assessment of regional brain 

volumes (for a recent technical review see Whitwell 2009) using high-resolution structural brain 

images. Such structural images are usually recorded along with functional brain images during brain 

imaging experiments. These structural images are then normalized to a common brain template and 

segmented into different tissue compartments, usually gray matter, white matter, and cerebrospinal 

fluid (see Figure 2 for the processing flow of the images).  

Figure 2 about here 

In this paper, we first applied VBM to explore brain regions that showed a variation in gray 

matter volume (GMV) that predicted individual differences in the magnitude of MPE. We then used 

the VBM results to inform follow-up behavioral experiments that shed more light on the personality 

traits linked to the functioning of these brain regions. 

STUDY 1: BRAIN MODERATORS OF MARKETING PLACEBO EFFECTS DURING FOOD 

CONSUMPTION  

The goal of study 1 was to test whether individual differences in the size of gray matter 

volume in (1) the striatum, (2) the posterior insula cortex and somatosensory cortices, and (3) 

prefrontal areas moderate MPE, as suggested by our model outlined above. To summarize, our model 

predicted that three different individual differences underlie MPE: 

H1a: The greater the GMV in the striatum and in prefrontal structures (i.e., lateral and 

medial dPFC and lateral OFC), the more responsive participants are to MPE. 

H1b: The greater the GMV in the posterior insula and somatosensory cortices, the less 

responsive participants are to MPE. 
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To test these hypotheses, we used the structural neuroimaging data from three different 

experiments that have investigated neural correlates of MPE using functional neuroimaging data. We 

pooled the structural neuroimaging data of three different experiments to ensure an appropriate 

sample size for such an exploratory analysis (Simmons, Nelson, and Simonsohn 2013). These studies 

investigated two different types of MPE: prices (high vs. low) and healthfulness claims (light vs. 

regular; organic vs. regular). Given how similar the underlying neural mechanisms of placebo effects 

generally seem to be (Atlas and Wager 2013; Plassmann and Wager 2013; S. A. Wright et al. 2013), 

this seems a reasonable approach. Below, we briefly describe the design of these three studies. 

Design and Procedure 

The first experiment investigated how the price of wines influenced behavioral and neural 

measures of experienced utility (Plassmann et al. 2008). The experiment applied a two-factorial 

within-subjects design with instructed price (high = $90 and $45; low = $10 and $5) as the first factor 

and actual retail price (wine 1 = $90; wine 2 = $5) as the second factor. A third wine was used as a 

distractor, with an identical instructed and actual retail price of $35. During this experiment, 20 

participants (11 males, mean age 24.5 years) believed that they would consume five different wines 

with different retail prices ($90, $45, $35, $10, $5) while their brains were scanned using functional 

magnetic resonance imaging. However, in reality subjects consumed only three different wines; two 

of the wines were administered with two different prices (wine 1: $90 and $10; wine 2: $45 and $5) 

to keep the physical consumption constant. Subjects showed a significant effect of price on 

experienced utility on a behavioral level (using a Likert scale from 1 = not at all to 6 = very much) 

and, more important, also on a neural level (see Plassmann et al. 2008 for the details of the results). 

In the current study, we were interested in whether gray matter volume in specific brain structures—

the ones in our model, outlined above—would moderate MPE. Against this background, the 

behavioral and structural neuroimaging data of the 20 subjects were entered in a novel application of 

automated, structural brain imaging analysis, the VBM analysis described above. 
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The second experiment was very similar to the first and served as a neuroimaging pilot study 

(N = 12, 6 male, mean age 30.3 years) for an extended version of Plassmann et al.’s experiment 1. 

This extension consisted of two points: First, instead of using wines of very different actual retail 

price classes, in experiment 2 we used wines of the same price class (€10–€13) and randomly 

assigned the wines to different instructed price conditions (€3, €16, and €18). Second, we added a 

condition that varied whether the subjects received the wines for free as in experiment 1 or had to 

pay for the wine. In this study, we could replicate the behavioral effects of the price condition from 

experiment 1, but found no significant results of the payment condition and also no significant 

interaction effect. The results have been reported elsewhere (Skvortsova et al. 2013). As with 

experiment 1, we used the behavioral and structural neuroimaging data of the 12 subjects for the 

VBM analysis in the current study.  

The third experiment used different types of product labels instead of prices to generate 

different expectations of the pleasantness of the product. More specifically, we used different types 

of healthfulness claims for milkshakes that were shown to create either positive expectations about 

the pleasantness of the taste (“organic”; Lee et al. 2013) or negative expectations about the 

pleasantness of the taste (“light”; Chandon and Wansink 2012; Raghunathan, Walker Naylor, and 

Hoyer 2006; Werle et al. 2013); there was also a neutral condition (“regular”).1 In other words, in 

this experiment, we applied a one-factorial between-subjects design with healthfulness label of a 

vanilla or chocolate milkshake. A total of 58 subjects participated in this experiment (28 males, Mage 

= 27 years, SEM = 4.25). One group of subjects (N = 29) consumed identical milkshakes but thought 

they would be either organic or regular; the other group of subjects (N = 29) consumed identical 

milkshakes but thought they would be either light or regular. While they were drinking, their brains 

were scanned using fMRI. Subjects showed a significant effect of healthfulness label on experienced 

																																																								
1 The directions of these effects were pretested in a pre-scanning session and are reported in detail in Atlas et al. 
(2014).	
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utility on a behavioral level and, more important, also on a neural level. See Atlas et al. (2014) for the 

details of the results. In the current study, we were again interested whether gray matter volume in 

specific brain structures outlined in our model above would moderate MPE. Against this background, 

we entered the behavioral and structural neuroimaging data of the 58 subjects in our VBM analysis. 

To conclude, a total of 90 subjects who participated in one of the three experiments described 

above were included in the following VBM analysis. 

Data Acquisition, Analysis, and Results 

All study participants underwent MRI on either a 1.5- or 3-Tesla scanner (Magnetom Trio or 

Avanto, Siemens, Erlangen, Germany). An eight-channel head coil was used for signal reception. All 

sequences were performed using a T1-weighted MPRage sequence with a resolution of 1x1x1 mm in 

sagittal orientation with 160 slices. Specific data acquisition parameters differed slightly in the three 

experiments of study 1 (3T experiment 1 at Caltech: TR 2200 ms, TE 9.2 ms, flip angle 30°, FOV 

256 mm; 3T used for some participants of experiments 2 and 3 at Bonn University: TR 1300 ms, TE 

3.9 ms, flip angle 10°, FOV 256 mm; 1.5T used for some participants of experiments 2 and 3 at Bonn 

University: TR 1520 ms, TE 3.6 ms, flip angle 30°, FOV 256 mm). 

Voxel-based morphometry techniques (Ashburner and Friston 2000) were performed in 

the context of SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8) using the VBM8 toolbox 

(http://dbm.neuro.uni-jena.de/vbm/download). Images were automatically segmented and 

normalized using the high-dimensional DARTEL algorithm as implemented in SPM8. Gray 

matter datasets were analyzed modulated (nonlinear only), which permits analysis of gray matter 

volume and controls for individual brain size differences. All gray matter images were smoothed 

with a Gaussian kernel at half-width full-maximum of 8 mm.  

We first performed a whole-brain analysis to investigate which brain regions’ gray matter 

volume varied as a function of responsiveness to MPE, with the goal of providing first evidence for 
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our model’s predictions (see Table 1). To do so, we computed an MPE responsiveness score defined 

as behavioral experienced utility rating in the high minus low expectancy condition.  

Table 1 about here 

To address our specific a priori hypotheses outlined above, we then conducted an 

independent region-of-interest (ROI) analysis and used differences in gray matter volume in the three 

hypothesized brain regions to predict MPE responsiveness using regression analysis. Importantly, 

this ROI analysis was independent from the whole-brain analysis because the ROIs were defined 

based on independent studies in the literature. More specifically, the ROIs were defined as a sphere 

with a diameter of 8 mm around previously reported coordinates: These coordinates were for the 

striatal mask a combination of the right and left ventral striatum based on the review paper of Bartra 

and colleagues (-12/12/-6 and 12/10/-6; Bartra, McGuire, and Kable 2010); for the posterior insula a 

region based on a review paper by Benedetti and colleagues on placebo effects (44/-15/4; 

Benedetti et al. 2003); and for the dmPFC a region based on a study by Ochsner and colleagues 

(-10/50/34; Ochsner et al. 2004) on cognitive regulation and emotion reappraisal. Using 

MarsBaR (v.0.43; http://marsbar.sourceforge.net) we then extracted individual gray matter 

volumes of the predefined ROIs and used those ROIs for the regression analyses. 

To test whether gray matter volumes in the striatum, the dmPFC, and the posterior insula 

moderate MPE, we followed the procedure suggested by Judd, Kenny, and McClelland (2001) for 

within-subjects designs: We entered the MPE responsiveness score as a dependent variable in a 

regression analysis with gray matter volume in the striatum, the dmPFC, and the posterior insula as 

predictors, controlling for age and gender (model 1). We entered age and gender in the first 

regression model because both have been shown to influence gray matter volume (Good et al. 2001; 

Luders and Toga 2010) and also to be consistent with the model applied in the whole-brain VBM 

analysis described above. However, to show that the results are not dependent on the inclusion of 
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these predictors in the model, we also estimated a second model that does not include age and gender. 

Table 2 lists the results of both models.  

We found that the GMV in all three brain structures moderates MPE (see Figures 3a–c). 

Interestingly, we found a positive relationship for GMV in the striatum (standardized beta 

coefficient: .30) and the dmPFC (standardized beta coefficient: .37), but a negative relationship for 

GMV in the posterior insula (standardized beta coefficient: –.30). 

Table 2 and Figure 3a-c about here 

Discussion 

We found three brain regions that are unrelated to neural signatures of experienced utility to 

correlate with individual differences of MPE: (1) the striatum, (2) the dmPFC, and (3) the posterior 

insula. WE first would like to acknowledge that there is an ongoing debate about the robustness of 

structural brain-behavior (SBB) correlations. A recent study failed to replicate SBB correlations in 

five studies (Boekel et al. (in press)). Even though we cannot exclude that our results may fail to 

replicate in future studies since we have not conducted such a replication, we think that our results 

are more robust because of several reasons: i) our analysis is based on three different data sets, which 

should control for some random effects; ii) we provide additional behavioral evidence from two 

studies (i.e. studies 2 and 3 of this paper described below) which is actually based on and informed 

by the SBB correlations, providing some independent evidence for our effects, and iii) according to 

Simsohn (in press) failures to replicate have to be treated with caution. For example in the case of the 

Boeckel et al. replication attempts of SBB one could argue that their replications might failed to 

replicate previous findings because their replication studies were underpowered etc. Note that 

Simsonhn argues for a sample size of the replication study of 2.5 times the sample size of the orginal 

study.  
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A crucial next question from a consumer research standpoint is this: What psychological 

variables can be linked to changes in GMV in these areas? Answering this question needs to be done 

with a lot of caution because a given brain region can be involved in several unrelated psychological 

processes, a problem that has been referred to as “reverse inference” (Ariely and Berns 2010; 

Plassmann, Ramsøy, and Milosavljevic 2012; Poldrack 2006, 2011). Several solutions have been 

proposed to test the selectivity but also the specificity using automated brain-mapping frameworks 

that use text mining, meta-analysis, and/or machine-learning techniques to generate a large database 

of mappings between neural and psychological functions. Here, we used the following two-step 

procedure:  

We first applied the framework suggested by Yarkoni et al. (2011) to compute measures of 

how selective and how specific our brain regions of interest are. Their approach allows the 

computation of a measure of reverse inference indicating how consistently and selectively a brain 

area is involved in a specific psychological process. The activation data used in this framework is 

based on nearly 200,000 activations from almost 6,000 functional magnetic imaging studies and thus 

contains a broad set of term-to-activation mappings, which makes this framework well suited for 

drawing quantitative inferences about mind-brain relationships.  

The measures suggested in this framework are as follows: (1) z-scores corresponding to the 

likelihood that a region will be reported active if a study uses a particular term (i.e., 

P(Activation|Term)), (2) z-scores corresponding to the likelihood that a term is used in a study given 

the presence of reported activation (i.e., P(Term|Activation)), and (3) a posterior probability map—

the estimated probability of a term being used given the presence of activation (i.e., 

P(Term|Activation)). The first component can be seen as a measure of forward inference because it 

indicates consistency. However, a brain area also needs to be selectively involved in the 

psychological process of interest. The second and third components address this point and serve as 
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measures of such a selectivity—that is, of reverse inference. Note that more details about Yarkoni et 

al.’s framework are provided in the appendix. 

 As a second step, we then entered the locations of our peak voxels in the location database of 

Yarkoni et al.’s (2011) approach and evaluated different options suggested by NeuroSynth based on 

theoretical considerations drawing on our model. The results are as follows: The subarea of the 

striatum (i.e., the ventral and dorsal parts) in which the average of the whole-brain VBM analysis fell 

has forward inference value of Zforward = 9.05, signifying consistency, and a reverse inference value of 

Zreverse = 6.23, posterior probability = .78, signifying selectivity of this area to be involved in reward 

anticipation and motivational processing. Reward processing was the psychological process with the 

highest reverse inference value; this is consistent with theoretical considerations outlined above. 

The subarea of the insula (i.e., the posterior parts) in which the average of the whole-brain 

VBM analysis fell has forward inference value of Zforward = 4.75, signifying consistency, and a 

reverse inference value of Zreverse = 4.14, posterior probability = .78, signifying selectivity of this area 

to be involved in somatosensory processing, pain-related processing (Zreverse = 3.73, posterior 

probability = .89), and autobiographical processing (Zreverse = 3.02, posterior probability = .86). 

Another potentially relevant process with a higher reverse inference z-score but lower posterior 

probability was “inhibitory” (Zreverse = 4.63, posterior probability = .85). In addition, other studies 

including a large-scale meta-analysis also found this area to be involved in introspection and 

somatosensory awareness (Chang et al. 2013; Simmons et al. 2012). These findings are largely 

consistent with our model outlined above that the neural activity in the posterior part of the insula is 

linked to somatosensory awareness. 

Last, the subarea of the dmPFC in which the average of the whole-brain VBM analysis fell 

has a forward inference value of Zforward = 3.53, signifying consistency, and a reverse inference value 

of Zreverse = 3.25, posterior probability = .91, signifying selectivity of this area to be involved in 

working memory functions. Other potentially relevant processes were “attribution” (posterior 
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probability = .91), “decision-making” (posterior probability = .87), “thinking” (posterior probability 

= .87), and different emotional states (posterior probability = .86–.88). Taken together, based on 

Yarkoni et al.’s approach, these results show that the dmPFC is involved in a variety of different 

psychological processes linked to cognitive processing of emotional states and experiences. We 

further turn here to additional results from studies investigating psychological processes that are in 

line with our model’s theoretical considerations. These are the role of the dmPFC for working 

memory-based cognitive regulation and appraisal of emotional states—that is, cognitive emotion 

generation (Kober et al. 2008; Ochsner et al. 2009)—and also more specifically for working 

memory-based cognitive regulation of responses during value-based decision-making (Venkatraman, 

Payne, et al. 2009; Venkatraman, Rosati, et al. 2009). 

To conclude, the results from study 1 give first evidence that individual differences in MPE 

are linked to reward processing as signified by differences in GMV in the striatum, somatosensory 

awareness as signified by differences in GMV in the posterior insula, and cognitive appraisal of 

emotional experiences as signified by differences in GMV in dmPFC.2 To provide further evidence 

for this new model of how MPE work, we tested the individual difference on a personality trait level 

in studies 2a, 2b, and 2c.  

STUDY 2: INDIVIDUAL DIFFERENCES IN REWARD-SEEKING, COGNITIVE, AND 

SOMATOSENSORY FOCUS FOR THE EFFECTS OF PRICE DURING WINE TASTING 

To test the predictions about individual differences of MPE on the psychological personality trait 

level derived from our conceptual model and also the brain imaging results from study 1, we 

undertook three experiments that provided further evidence for our model of how MPE work. The 

logic of these studies is as follows: All three studies (2a, 2b, and 2c) investigated the influence of 

																																																								
2	Note that more support for the latter two processes is also provided by the other findings of the whole-brain 
analysis: GMV in other somatosensory areas—that is, somatosensory cortex II—showed negative correlation with 
MPE responsiveness, and other areas found to be involved in cognitive processing and regulation of emotional 
states—that is, lateral parts of the ventral PFC—showed a positive correlation with MPE responsiveness (see whole-
brain analysis results in Table 1).	
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high vs. low price tags on food consumption, each testing a different one of the three moderators. 

The design of these studies is almost identical to the first study by Plassmann et al. (2008) described 

above. The only differences are that study 2a used price levels that were adapted to the market prices 

in France and were expressed in euros instead of U.S. dollars (i.e., wine 1: €43 and €5, wine 2 = €30 

and €3, distractor wine 3 = €16) and that in all three studies each wine in each condition was sampled 

only once and experienced utility was sampled using a visual analog scale with anchors “not at all” 

(coded as 1) to “very much” (coded as 7).  

Study 2a: Moderation of Marketing Placebo Effects by Reward-Seeking as a Personality Variable 

The purpose of study 2a was to investigate whether participants who are more reward-

seeking are also more susceptible to MPE. This prediction was based on our finding in study 1 that 

higher GMV in the striatum was linked to higher MPE responsiveness and the fact that striatal 

activity has been linked in overlapping regions to reward-seeking (Beaver et al. 2006; Schweinhardt 

et al. 2009). We used the reward-seeking subscale of the behavioral activation system (BAS) scale to 

sample how responsive people are to rewards (Carver and White 1994).  

H2a: Marketing placebo effects will be more pronounced the higher subjects score on the 

reward-seeking subscale. 

Design and procedure. Ninety male participants from a French university (Mage = 23.0 years, 

SEMage = 2.44 years) gave experienced utility ratings for each wine after consumption. After the 

wine-tasting task, we sampled the reward-sensitivity subscale of the behavioral activation scale 

(Carver and White 1994). The scale has items such as “When I get something I want, I feel excited 

and energized,” and our subjects answered on a 5-point Likert scale ranging from 1 (“do not agree at 

all”) to 5 (“completely agree”).  

Analysis and results. We first tested whether we could replicate the expectancy effects 

reported in experiments 1 and 2 of study 1. One subject had to be excluded because he paid no 

attention to the task. Thus, experienced utility ratings of 89 subjects were entered as a dependent 
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variable in a one-way within-subjects ANOVA with the high vs. low price condition (pooled over 

both wines) as predictor. We found a significant effect of price, F(1, 88) = 57.07, p < .001. 

Next, we tested whether differences in reward sensitivity moderated the MPE of price, 

following the same procedure to test for within-subject design moderators as applied in study 1 (Judd, 

Kenny, and McClelland 2001). Table 3 lists the results of this analysis; Figure 4a (below) shows the 

correlation between BAS subscale scores and MPE. We found that the BAS subscale scores indeed 

moderated the effect of price on experienced utility ratings, T(1, 87) = 2.98, p = .004.  

Table 3 about here 

Discussion. In study 2a we showed that a consumer’s reward responsiveness as measured by 

the BAS subscale is indeed positively correlated with the strength of MPE. The more responsive 

participants were to rewards the more their experienced utility of wine was influenced by price.  

 

Study 2b: Moderation of Marketing Placebo Effects by Somatosensory Awareness as a Personality 

Variable 

Another interesting result from the VBM analysis was a negative correlation between MPE 

and the gray matter volume in the posterior part of the insula, which as outlined above has been 

linked to somatosensory processing and introspection. This finding gives first evidence for the idea 

that a consumer’s somatosensory awareness might play an important role for MPE.  

More concretely, when MPE are at play, cognitive cues such as the price of or the label on 

the product generate a signal that affects bottom-up processes of internal somatosensory experiences 

such as tasting a wine or milkshake. An increased sensitivity of the brain systems encoding 

somatosensory experience should put more weight on the actual somatosensory experience, allowing 

less influence of external cognitive cues.  
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The purpose of study 2b was to investigate whether participants who have high 

somatosensory awareness are less receptive to MPE. We measured somatic awareness using the 

private body consciousness (PBC) subscale of the Body Consciousness Questionnaire (BCQ) (Miller, 

Murphy, and Buss 1981) and predicted: 

H2b: The size of MPE decreases the higher subjects score on the private body consciousness 

subscale. 

Design and procedure. Eighty-five alumni of a North American university (45 males, Mage = 

32.84 years, SEMage = 5.7 years) gave experienced utility ratings for each wine after consumption. 

After the wine-tasting task, we sampled a scale that measures somatic awareness. This scale was the 

private body consciousness subscale of the Body Consciousness Questionnaire (Miller, Murphy, and 

Buss 1981). As its name suggests, PBC is a personality trait that characterizes how attentive 

(conscious) a person is to his or her internal body signals. The scale has items such as “I’m aware of 

changes in my body temperature,” and subjects responded on a 7-point Likert scale ranging from 1 

(“strongly disagree”) to 7 (“strongly agree”). Individuals who score high on the PBC scale tend to 

pay more attention to somatosensory processes. For instance, people high on PBC tend to report 

more pain than those who are low on this characteristic (Ferguson and Ahles 1998). PBC has also 

been linked to increased embodied cognition (Häfner 2013). 

Analysis and results. We first tested whether we could replicate the expectancy effects 

reported in studies 1 and 2a. The experienced utility ratings of 85 subjects were entered as a 

dependent variable in a one-way within-subjects ANOVA with the high vs. low price condition 

(pooled over both wines) as predictor. We found a significant effect of price, F(1, 84) = 23.55, p 

< .001. 

Next, we tested whether differences in PBC moderated the MPE of price, following the same 

procedure to test for within-subject design moderators as applied in study 1 (Judd, Kenny, and 

McClelland 2001). Table 3 lists the results of this analysis; Figure 4b (below) shows the correlation 
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between PBC score and MPE. We found that the PBC scores indeed moderated the effect of price on 

experienced utility ratings, T(1, 84) =	–2.83, p = .006.  

Discussion. In study 2b we showed that a consumer’s somatosensory awareness as measured 

by the private body consciousness subscale is indeed negatively correlated with the strength of MPE. 

The more aware subjects were of their internal bodily signals the less their experienced utility of 

wine tasting was influenced by price. 

Study 2c: Moderation of Marketing Placebo Effects by Need for Cognition as a Personality Variable 

The third individual difference found in the VBM analysis was a positive correlation between 

MPE and the gray matter volume in the dmPFC, which as outlined above has been linked to 

cognitive processes necessary for the regulation and appraisal of emotional experiences, working 

memory, and thinking. This finding gives first evidence for the idea that a consumer’s need to focus 

on cognitive cues might play an important role for MPE.  

More concretely, when MPE are at play, cognitive cues such as the price of a wine generate a 

cognitive top-down value signal that affects bottom-up processes of internal somatosensory 

experiences such as tasting a wine or milkshake. In contrast to the findings about somatosensory 

focus in study 2b, an increased sensitivity of the brain systems linked to cognitive appraisal of 

emotional experiences and cognitive thinking should increase how much subjects are influenced by 

external cognitive cues and in turn increase MPE responsiveness. 

The purpose of study 2c was to investigate whether participants who have a higher need for 

cognition (NFC) are more receptive to MPE. NFC is a personality variable reflecting the extent to 

which individuals are inclined to engage in cognitive activities (Cacioppo and Petty 1982; Cacioppo, 

Petty, and Kao 1984). Cohen, Stotland, and Wolfe (1955) defined the NFC as “a need to structure 

relevant situations in meaningful, integrated ways,” “the notion of thinking abstractly is appealing to 

me,” and “a need to understand and make reasonable the experiential world.” Cognitive cues based 
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on marketing actions such as labels or prices can be seen as signals that help to structure experiences, 

and people who are more responsive to using such cognitive cues to structure their experiences 

should be more receptive to MPE. Against this background we predict: 

H2c: MPE will be more pronounced the higher subjects score on the need for cognition scale. 

Design and procedure. The design of this experiment was identical to that of experiment 1 

from study 1 and study 2b, using the same price levels and wines (Plassmann et al. 2008). Eighty 

participants from a North American university population (41 males, Mage = 24.01 years, SEMage = 

2.8 years) gave experienced utility ratings for each wine after consumption. After the wine-tasting 

task, we sampled a scale that measured need for cognition. This scale was Cacioppo et al.’s short 

form of the NFC scale (Cacioppo, Petty, and Kao 1984). Subjects responded on a 7-point Likert scale 

ranging from 1 (“strongly disagree”) to 7 (“strongly agree”).  

Analysis and results. We first tested whether we could replicate the expectancy effects 

reported in studies 1, 2a, and 2b. One subject was excluded because he did not pay attention to the 

task. The experienced utility ratings of 79 subjects were entered as a dependent variable in a one-way 

within-subjects ANOVA with the high vs. low price condition (pooled over both wines) as predictor. 

We found a significant effect of price, F(1, 78) =	44.39, p < .001. 

Next, we tested whether individual differences in need for cognition moderated the MPE of 

price following the same procedure to test for within-subject design moderators as applied in study 1 

(Judd, Kenny, and McClelland 2001). Table 3 lists the results of this analysis; Figure 4c shows the 

correlation between NFC scores and MPE. We found that the NFC scores indeed amplified the effect 

of price on experienced utility ratings, T(1, 78) =	2.40, p = .019.  

Add Figure 4 about here 

Discussion. In study 2c we showed that a consumer’s focus on cognitive cues as measured by 

the need for cognition scale is indeed positively correlated with the strength of MPE. The higher the 
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participants’ need for cognition the more their experienced utility of wine tasting was influenced by 

price. 

Taken together, studies 2a, 2b, and 2c provided further evidence that participants high in 

reward-seeking and high in need for cognitive processing were more responsive to MPE, whereas 

subjects high in somatosensory awareness were less responsive to MPE. However, these studies 

investigated the influence of these three moderators in three separate studies rather than one single 

study. Also, studies 2a, 2b, and 2c all investigated individual differences in how prices affect food 

consumption. It remained unclear whether our individual difference effects transfer to other 

marketing-based expectancy effects, such as different brand labels, on different consumption 

experiences, such as aesthetic consumption. We addressed these issues in study 3. 

 

STUDY 3: INDIVIDUAL DIFFERENCES IN REWARD-SEEKING, COGNITIVE PROCESSING, 

AND SOMATOSENSORY AWARENESS FOR THE EFFECTS OF BRANDING DURING 

AESTHETIC CONSUMPTION 

This last study aimed at conceptually replicating our findings from studies 2a, 2b, and 2c for 

the effect that a different cognitive cue (whether an art piece was generated by an artist or the 

experimenter on a computer) has on a consumption experience in a different sensory domain 

(experienced aesthetic pleasantness). In addition, in study 3 we sampled all three personality 

variables of interest in the same participants to provide increased statistical control of the individual 

difference effects we found in study 2. 

Design and procedure. Subjects were instructed that the goal of the study was to better 

understand their preferences for different types of art and how their personality influences those 

preferences. The study was conducted using an online sample (drawn from Amazon’s Mechanical 

Turk) and took on average 7 minutes and 49 seconds to complete. Subjects were paid 50 U.S. cents 

for their participation.  
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Subjects were instructed that they would see different pictures and be asked to rate how much 

they enjoyed looking at each one using a 9-point Likert scale (1 = not at all to 9 = very much). Some 

of the pictures would show abstract work by artist Wassily Kandinsky; some would show abstract 

work generated by the experimenter on a computer. Unbeknownst to the participants, all stimuli were 

unfamiliar abstract art pieces by various artists. This task was adapted from two studies by Kirk and 

colleagues, and we used the same art stimuli used in these papers (Kirk et al. 2009a,b). Each subject 

rated 10 pictures, five labeled as crafted by an artist (the high expectancy condition) and five labeled 

as being generated by the experimenter on his computer (the low expectancy condition). 

Assignments of pictures to the artist and computer conditions were counterbalanced, and the order in 

which the pictures were shown was completely randomized. We then sampled in a randomized order 

the personality scales from studies 2a, 2b, and 2c (i.e., the need for cognition scale, the reward-

seeking subscale of the behavioral activation system scale, and the private body consciousness 

subscale).3 At the end, subjects were asked about their age, gender, and thoughts about the goal of the 

study and were then thanked for their participation. The results are shown in Table 3 and Figure 5 

(below). 

Analysis and results. A total of 581 subjects participated in study 3. We excluded 89 subjects 

based on three predefined criteria (Simmons, Nelson, and Simonsohn 2011): (1) taking 2 minutes or 

less or longer than 30 minutes to respond (37 subjects), (2) not passing an instructed manipulation 

test to measure attention (49 subjects) (Oppenheimer, Meyvis, and Davidenko 2009), and (3) being a 

self-reported art expert (3 subjects). Therefore, 492 subjects were used for the data analysis. 

We first tested whether we could replicate the expectancy effects reported in studies 1 and 

2a–c. The experienced utility ratings were entered as a dependent variable in a one-way within-

subjects ANOVA with the artist vs. computer condition as predictor. We found a significant effect of 

																																																								
3 Note that although all the scale items used in study 3 were identical to those used in studies 2a–c, the scale anchors 
differed. In study 3 the reward-seeking subscale uses a 7-point Likert scale and the need for cognition scale uses a 5-
point Likert scale.	
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our expectancy manipulation such that participants showed a higher experienced utility for seeing art 

pieces created by an artist vs. a computer, F(1, 491) =	78.91, p < .001. 

Next, we tested whether individual differences in reward-seeking, private body consciousness, 

and need for cognition moderated the MPE of price following the same procedure to test for within-

subject design moderators as applied in study 1 (Judd, Kenny, and McClelland 2001). Table 3 lists 

the results of this analysis; Figure 5 shows the correlation between MPE and (a) reward-seeking, (b) 

PBC, and (c) NFC scores. We found that the BAS (T(1, 491) =	6.53, p < .001) and NFC (T(1, 491) =	

2.44, p = .015) scores indeed amplified expectancy effects on experienced utility ratings, whereas 

PBC moderated expectancy effects on experienced utility ratings (T(1, 491) =	–2.75, p=.006). 

Figure 5 about here 

Discussion. Study 3 served as an important extension of studies 1 and 2, in that we 

conceptually replicated our previous results that individual differences in reward-seeking, 

somatosensory awareness, and cognitive focus moderated marketing expectancy effects on the 

consumption experience. Importantly, we could show that such effects also hold for a different type 

of expectancy effects (an artist’s expertise) in another sensory domain (aesthetic consumption) and 

thus are not specific to pricing or health claim effects on food consumption. 

GENERAL DISCUSSION 

It is widely known that marketers can change how consumers perceive the consumption of 

their products and subsequent satisfaction, influencing not only purchasing decisions but also usage 

frequency and recommendation behavior. The existence of marketing placebo effects shows how 

fundamental the impact of marketing actions can be: Marketing actions change not only consumers’ 

perceptions but also the biological processes underlying their consumption and purchasing decisions. 

In this paper, we have extended our understanding of the scope of the effects that marketing actions 

have in important ways: Using a novel application of structural brain imaging in combination with 
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behavioral experiments, we are among the first to shed light on individual difference variables that 

affect MPE. Across three studies we found first evidence for three individual differences in MPE on 

brain and behavioral level. Importantly, we also studied the generalizability of these individual 

difference effects for different types of marketing-based expectations (price, health claim, brand) and 

different types of consumption experiences (food and aesthetic consumption). 

First, in studies 1, 2a, and 3 we showed that reward-seeking and motivational behavior play 

an important role in MPE. The more sensitive consumers’ neural and behavioral signatures of 

reward-seeking systems are, the more responsive they are to MPE. Then, in studies 1, 2b, 2c, and 3 

we provided first evidence that MPE rely on an interplay between higher-level cognitive top-down 

processing and lower-level somatosensory bottom-up processing. On one hand, we showed that 

increased GMV in brain regions involved in cognitive aspects of emotion generation and control, and 

participants’ need for cognition and cognitive focus, favored the existence of MPE. On the other 

hand, we showed that the more subjects were able to focus on their internal, somatosensory states as 

compared to external cues and the smaller the GMV in the brain’s somatosensory systems, the less 

responsive they were to MPE. 

Understanding the underlying mechanisms of MPE is not only important from an academic 

perspective; it is also highly relevant for marketers and public policy institutions. Marketers usually 

aim at increasing consumers’ consumption enjoyment, so they need to understand how they can 

leverage their marketing actions to contribute to greater consumption enjoyment. For example, 

several studies have shown how marketers are capable of changing their consumers’ reward-seeking 

drive. A mouthwatering smell in a bakery and food samples in a supermarket are triggers for reward-

seeking behavior (Wadhwa, Shiv, and Nowlis 2008). Understanding how such actions might interact 

with MPE is important from the perspective of a marketer.  

However, caution is necessary for several reasons. First, an important limitation of the 

current findings is that they provide correlational and not causal evidence. This calls for future 
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studies that manipulate reward processing and cognitive and somatic focus rather than measuring 

individual differences relating to such processes as a personality trait variable. Another interesting 

extension of this work would be to manipulate neuro-pharmacological processes underlying MPE 

that relate to our current findings. For example, could the administration of a dopamine blocker 

attenuate MPE? These questions remain to be answered by future research. 

A second point that deserves caution is that MPE might turn into disadvantageous effects on 

consumers’ behavior and well-being. In this case, it is crucial for public policy institutions to 

understand the mechanisms underlying MPE so they can promote behavior that decreases the 

existence of MPE. Exploring the impact of other specific marketing or public policy actions and their 

interactions is a worthwhile direction for future research. Are MPE similar across domains, and do 

they all have the same underlying neurobiological mechanisms? How do different consumption 

situations affect MPE, and what are the boundary conditions? For example, how are price-based 

MPE affected by giving out the products for free as compared to having consumers pay for them?  

An extreme case for the disadvantageous effects of MPE on consumer well-being that 

deserves further research is the study of patient populations that show dysfunction of the 

neurobiological processes underlying MPE. For example, obese patients are thought to have 

dopamine deficiencies (Volkow, Wang, and Baler 2011). Would our findings imply that they are 

more or less prone to be biased by healthfulness claims on the packaging? Along those lines, how do 

MPE affect other patient groups that have impaired dopaminergic pathways, such as addicts and 

people suffering from severe anxiety, ADHD, and OCD? 

This paper can be seen as a showcase of how questions relevant to consumer behavior can 

benefit from an interdisciplinary consumer neuroscience approach. We first used existing theories in 

cognitive neuroscience about pain placebo effects to extend Shiv et al.’s 2005 model of how MPE 

work. This new model gave us novel concrete predictions about brain areas involved in neural 

processing anteceding MPE, and we then tested individual differences in the structure of these brain 
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regions in study 1. To do so, we used a brain-imaging tool that is new to consumer neuroscientists’ 

toolkit to determine variability in gray matter volume to identify individual differences in MPE 

responsiveness. Importantly, consumer neuroscience aims at not only understanding brain structures 

and function important for a behavior of interest, but also at how brain systems can be linked to 

psychological variables such as personality traits and psychological states. Thus, rather than merely 

drawing on reverse inferences about the role of the brain regions showing individual differences in 

brain structure for MPE, we tested how the predicted brain regions translate into personality traits in 

studies 2 and 3. Although following such a methodological approach seems very fruitful for future 

consumer neuroscience studies, it is also important to understand its limitations (Yarkoni 2013).  

We would like to highlight two important points: First, it is important to understand how 

variations in GMV arise. Since the development of modern MRI machines, which allow for the 

measurements of large numbers of subjects without the need for contrast agents or radiation, literally 

thousands of studies have been performed investigating the relationship of brain structure to a variety 

of individual measures. While in the early years of structural brain studies the need for manual 

volumetry hindered the analysis of large sample sizes, the development of automated techniques such 

as voxel-based morphometry (Ashburner and Friston 2000; Wright 1995) allowed researchers to 

increase sample sizes and to investigate individual differences and even longitudinal changes.  

One important question that has been investigated is the role of genetic variation in the brain, 

an approach called imaging genomics (Thompson, Martin, and Wright 2010). These studies have 

shown that genes contribute to the development and structure of the brain. However, it is important 

to note that a variety of studies—mainly those performed longitudinally—clearly have shown the 

influence of our environment and not only of our genetic makeup on regional brain volumes. For 

example, Draganski and colleagues (2004) showed that extensive juggling training leads to an 

increase in gray matter volume in areas of the brain related to motion detection and visuomotor 

integration. These intervention studies have been performed mainly in the motor domain because of 
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the availability of controlled training programs and the easy assessment of behavioral changes, but 

some studies suggest the existence of similar mechanisms in other domains, such as learning and 

memory (Draganski et al. 2006; Maguire et al. 2000). Hence, it is important to note that variability in 

GMV is not due only to genetic predispositions but is also caused by environmental effects such as 

training and learning; consumers are not born with a specific MPE. 

Second, although brain-based measures offer a new way of understanding individual 

differences in placebo responses, they can be limited because most of the procedures are designed to 

detect nonzero effects but not to estimate predictive accuracy (Nichols and Poline 2009; Vul et al. 

2009; Wager et al. 2011). Thus, post hoc estimates of strengths of brain–MPE correlations might be 

inflated, and how accurately patterns of brain activity can predict MPE is unknown. In other words, 

future research is needed to use our extended model to predict activations underlying MPE using 

machine learning and pattern classification approaches.  
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TABLES 

TABLE 1 

RELATION OF GRAY MATTER VOLUME AND EXPECTANCY EFFECTS ON 

EXPERIENCED UTILITY 

 
Location Z-Score / k MNI Coordinates (Peak) 

x y z 

Positive correlation     
R. dmPFC (BA9)* 3.42/65 18 38 32 

R. Putamen* 3.26/770 21 12 –1.50 
L. lateral OFC 2.83/37 –35 56 –15 

R. inf. Occipital 2.98/48 42 –84 –13.5 
R. parahippocampal G. 2.93/13 21 –45 –8 

L. cuneus 2.88/21 –6 –92 15 
L. sup. temp. gyrus 2.90/16 –57 –63 20 

     
Negative correlation     

R. inf. Temporal* 3.75/341 38 6 –48 
L. rectal gyrus 2.84/26 –8 14 –24 
R. sup. occ.* 3.25/98 32 –72 20 
L. sup. occ.* 3.61/194 –23 –75 20 

R. posterior insula 3.07/14 45 –12 23 
L. precentral gyrus* 3.45/230 –40 –14 32 
R. precentral gyrus* 3.67/196 41 5 48 

 
* Also significant at p < .001. 
Note: The coordinates represent the peak voxel in the respective clusters. Only p < .005 with an 
extend threshold (k > 10) are presented. Regions in bold are part of MPE model from Figure 1. 
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TABLE 2 

TESTING FOR MODERATING EFFECTS OF GMV IN dmPFC, STRIATUM, AND POST 

INSULA: REGRESSIONS PREDICTING THE WITHIN-SUBJECTS MPE (EXPERIENCED 

UTILITYHIGH EXPECTATION – EXPERIENCED UTILITYLOW EXPECTATION) FOR EACH SUBJECT IN 

EXPERIMENT 1, N = 90 

 

Parameter DV: MPE 
Model 1 

DV: MPE 
Model 2 

 

Intercept 
–.96 (1.71) 

— 
–.85 (1.12) 

— 
 

GMV dmPFC  
5.35 (1.55)*** 

1.44 
4.75 (1.49)** 

1.33 
 

GMV striatum 
2.38 (.90)* 

1.55 
1.87 (.81) # 

1.27 
 

GMV posterior Insula 
–10.55 (3.58) ** 

1.28 
–11.68 (3.45) ***  

1.19 
 

Gender 
.04 (.18)  

1.07 
— 

 

Age  
.03 (.02)  

1.55 
— 

 

    
R2 .315 .298  
RMSE .807 .807  
AIC 222.67 220.82  

#p < .05. p < .01. **p < .005. ***p < .001 (two-tailed p-value used in testing the null hypothesis that 
the parameter is 0) 
Note: For each parameter, the first row shows unstandardized regression coefficients, with standard 
errors in parentheses; the second row shows the variance inflation factor to quantify multicollinearity 
issues in this regression. 
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TABLE 3 

TESTING FOR MODERATING EFFECTS OF PERSONALITY SCALES:  

REGRESSIONS PREDICTING THE WITHIN-SUBJECTS MARKETING PLACEBO MPE 

(EXPERIENCED UTILITYHIGH EXPECTATION – EXPERIENCED UTILITYLOW EXPECTATION) FOR 

EACH SUBJECT  

 

Parameter Study 2a, N=89 
DV: MPE 

Study 2b, N=85 
DV: MPE 

Study 2c, N=79 
DV: MPE 

Study 3, N=491 
DV: MPE 

 

Intercept 
–.79 (.96) 

 
–.73 (.42) 

 
.73 (.42) 

	
–.1.58 (.40) 

—  
 

BAS  
.58 (1.94)*** 

 
— 

 
— 

 
.31 (.05)**** 

1.02 
 

PBC  
— 

 
–.27 (.09)*** 

 
— 

 
–.14 (.05)*** 

1.01 
 

NFC  
— 

 
— 

 
.22 (.09)* 

 
.21 (.09)** 

1.01 
 

      
R2 .082 .09 .07 .12  
RMSE 1.740 1.0 .87 1.15  

Note: For each parameter, the first row shows unstandardized regression coefficients, with standard 
errors in parentheses. The second row shows the variance inflation factor to quantify 
multicollinearity issues in this regression. 
*p < .05 (two-tailed p-value used in testing the null hypothesis that the parameter is 0) 
**p < .01 (two-tailed p-value used in testing the null hypothesis that the parameter is 0) 
***p < .005 (two-tailed p-value used in testing the null hypothesis that the parameter is 0) 
****p < .001 (two-tailed p-value used in testing the null hypothesis that the parameter is 0) 
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FIGURES 
FIGURE 1: 

EXTENDED FRAMEWORK OF HOW MARKETING PLACEBO EFFECTS WORK AND 

FRAMEWORK FOR STUDIES 1–3 

 

 

 

FIGURE 2: 

OVERVIEW VOXEL-BASED MORPHOMETRY (VBM) APPROACH 
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FIGURE 3: 

RESULTS OF VBM ANALYSIS: GRAY MATTER VOLUME IN STRIATUM, POSTERIOR 

INSULA, AND dmPFC CORRELATE WITH SIZE OF MPE 
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FIGURE 4: 

RESULTS FROM STUDIES 2a–c: REWARD-SEEKING, COGNITIVE PROCESSING, AND 

SOMATOSENSORY AWARENESS MODERATE PRICE EFFECTS ON FOOD 

PLEASANTNESS 
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FIGURE 5: 

RESULTS FROM STUDY 3: REWARD-SEEKING, COGNITIVE PROCESSING, AND 

SOMATOSENSORY AWARENESS MODERATE THE EFFECTS OF AN ARTIST’S 

EXPERTISE ON AESTHETIC PLEASANTNESS 
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METHODOLOGICAL APPENDIX 

In this appendix we detail two methodological aspects of the current paper. We first provide more 
methodological details about the structural brain analysis that we applied and then give more detail 
about the methodology and limitations of Yarkoni et al’s NeuroSynth framework that has been 
applied in this paper. 

Additional methodological details about voxel-based morphometry (VBM) analysis study 

Voxel-based morphometry is an approach that allows comparison of the volume of tissues, in our 
case brain tissue, between or within groups of subjects (for a detailed review see Ashburner 2009). It 
is based on the following steps: 1) segmenting the individual brain into different tissue types (usually 
gray matter, white matter, and cerebrospinal fluid); 2) anatomical normalization of the individual 
brains to a common template to allow comparison of similar brain areas across subjects; and 3) 
correlating a factor of interest (e.g., group or behavioral measure) to the individual voxel-wise data.  

Here we are applying a more recent and more sophisticated registration method, the DARTEL 
approach (Ashburner 2007). In contrast to previous normalization procedures it includes a much 
higher number of parameters for estimating the normalization, which allows for much better 
between-subject realignment. Also, for the normalization procedure, the DARTEL approach 
generates a study-specific template. This algorithm has been shown in several studies to provide a 
very high degree of accuracy compared to the gold standard of manual segmentation (see, for 
example, a recent proof-of-concept study by Focke et al. 2014). 

To execute the VBM analysis we have used the VBM8 toolbox. It integrates the different processing 
steps into a single toolbox and provides tools for quality control of the data. As suggested in the 
VBM8 toolbox manual, we used a modulation of the voxel-wise information for nonlinear 
deformations only, which provides information on the local gray matter volume corrected for 
individual brain sizes. 

Additional details about large-scale automated synthesis of human functional neuroimaging data 
framework 

To add to the methodological details about the NeuroSynth framework from Yarkoni et al. that was 
briefly outlined in the main text, we here describe how the numbers of the different measures are 
generated, then provide a brief discussion of the limitations of this approach. 

NeuroSynth is a fully automated approach that allows rapid and scalable synthesis of the vast 
neuroimaging literature. It can be used to “generate large-scale meta-analyses for hundreds of broad 
psychological concepts; support quantitative inferences about the consistency and specificity with 
which different cognitive processes elicit regional changes in brain activity; and decode and classify 
broad cognitive states in new data solely on the basis of observed brain activity” (Yarkoni et al. 2011, 
p. 665). 

In a nutshell, the methodology behind this approach is as follows. For details see Yarkoni et al. 
(2011). 

1. Activation coordinates are extracted from about 6,000 published neuroimaging articles 
using an automated parser. 

2. The full text of all articles is parsed, and each article is tagged with a set of terms that 
occur at a high frequency in that article. The threshold for “high frequency” is arbitrarily 
set at .001. 
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3. A list of several thousand terms that occur at high frequency in 20 or more studies is 
generated.  

4. For each term of interest (e.g., “emotion,” “reward,” etc.), the entire database of 
coordinates is divided into two sets: those that occur in articles containing the term, and 
those that don’t. 

5. A large-scale meta-analysis is performed comparing the coordinates reported for studies 
with and without the psychological term of interest. On this basis the different maps 
described in the main text are generated (i.e., z- and p-value maps and posterior 
probability maps). 

Although the NeuroSynth framework is extremely promising, its application requires caution 
given that the development of the framework is still in its infancy. These are the most important 
limitations: 

1. NeuroSynth is subject to a publication bias of null effects not being published.  

2. The current version does not distinguish how specific terms are used because it applies a 
highly automated approach. For example, a paper stating that the amygdala was not 
found to correlate with fear processing would still be included in NeuroSynth’s algorithm 
when linking amygdala to fear. This and related problems of NeuroSynth are similar to 
sentiment analysis using online data and have been further advanced in that research area 
in marketing. Thus, such problems might be solved in the future. 

3. For technical reasons, NeuroSynth currently includes only a subset of published 
neuroimaging studies and needs continuous update. 

Taken together, NeuroSynth and similar approaches are an excellent first step in the right direction 
but will need further improvements. That is why it is essential to test the reverse inferences based on 
NeuroSynth measures in follow-up behavioral experiments, a procedure implemented in this paper. 

 


